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Abstract 

In circular particle accelerators of moderate size, one 
cannot entirely neglect the curvature of the structure and 
of the guide field. In practice, one may wish to restrict the 
region of analysis to that near the working aperture, while 
excluding a very substantial area closer to (and including) 
the axis of rotational symmetry_ In this way, a more 
efficient mesh can be generated for a program such as 
POISSON. In restricting the solution to the region of 
Interest 1 there must be concern regarding a suitable 
termination of the problem at the boundary of the mesh. 
For these reasons, we have employed toroidal coodinates in 
constructing the boundary to a relaxation mesh, and in 
formulating the boundary conditions that then would be 
imposed at such boundaries. 

Introduction 

This paper is an extension of a series of papers and 
reports on the use of boundary conditions associated with 
application of relaxa tion methods in the solution of partical 
differential equations. 1 - tO The current paper is a 
summary of one such report10 on the use of such 
boundary conditions in problems with axial symmetry. 

Magnetostatic problems with circular symmetry are 
soluble by relaxation programs such as POISSON in p, Z 
cylindrical coordinates. As is the case with other 
applications of relaxation methods, however, there must be 
concern regarding a suitable termination of the problem at 
the boundary of the mesh. (The condition that normally Is 
required is ol'l,e consistent with the absence of any "sources" 
In the region exterior to such a boundary.) In analyzing the 
magnetic fields o f circular particle accelerators, one may 
wish to restrict the region of examination to that near the 
working aperture and surrounding magnet structure, while 
excluding a very substantial area closer to (and including) 
the axis of rotatlonal symmetry for the entire structure. 

For the reason just indicated, one accordingly is led to 
consider the use of toroidal coordinates in constructing the 
boundary to a relaxation mesh for use in analyzing the 
magnetic fields of circular devices (such as accelerators and 
spectrometers), and in formulating the boundary conditions 
that then may be usefully imposed at such boundaries. The 
procedure adopted makes use internally of the 
characteristic form of the vector -potential function, in a 
source-free region, when expressed in toroidal coordinates. 
The relevant properties of associated Legendre functions of 
half-Integral degree are used in this connection and their 
introduction into the program POISSON is outlined. Results 
of some test cases are included, to illustrate the application 
of this techniQue for configurations with median-plane 
symmetry. We pursue such issues in the following Sections, 
commencing with a review of the characteristics of toroidal 
coordinates and continuing with an examination of related 
magnetostatic issues that will permit formulation of a 
boundary condition analogous in spirit to those devised 
previously at this Laboratory for application to other 
configurations.l.-t 

ItThis work was supported by the Director, Office of Energy 
Research, Office of High Energy :md Nuclear Physics, High 
Energy Physics Division, U.S. Dept. of Energy, under 
Contract No. DE-ACOJ-76SFOOO9B. 

The Differential Equation for the Potential 

Through use of the appropriate metric coefficients, one 
can write explicitly in toroidal coordinates Laplace's 
differential equation for a scalar potential function. As has 
been shown in some detail by MacRobert,ll solutions then 
may be found in which this potential function has the form 
of a factor (Cosh 11 • cos e)1/1 times the product of separate 
functions of the coordinates 11, t, and 4> (Fig. l). For such 
solutions, the functions of e and of ~ are each just circ~lar 
functions of their respective arguments, and the functIOns 
of 11 are Legendre functions (or associated Legendre 
functions) of halt -integral degree and argument z : Cosh 11· 

In the present work, however, we are specifically 
interested in POISSON computations of magnetic field for 
cases with axial symmetry, and wish It to make 
use of a vector-potentia l component A4l- (or A : pA4l-). to 
characterize this field. The homogeneous equation 
V x [V x AJ:O for A : A<I>l¢l then may be written 

~bSi~~; cos { ~~ (co~~n~: cos { A~)] 
+~, [C~Si~~; cos { ~ ( co~~~: cos , A~)]' 0 

•• wherein the dependent variable Act> Is to be regarded as a 
function of 11 and e, but independent of 4>. 

z 
Axis of rolational symmetry 

XBL 815·10165 

Figure 1. Toroidal Coordinates <t, 11. <1» 

Guided by the form known to be appropriate for the 
scalar·potential solutions to Laplace's equation in toroidal 
coordinates, we may proceed heuristically to achieve a 
separation of variables in the present! case, once A:m is 
divided by the factor (Cosh 11 • cos t) I,. We accordingly 
writ~ the vec~or -potential component A¢I in the form 

'/ ' A~ • (Cosh 11 - cos {) • cos n( G(~). 



With this substitution, the differential equation assumes the 

form g. tz " I) ~] • [/ 1 t u(Ot I)] G : a , 

(following some intenpediate algebraic work), the C 
dependence then is found to disappear (as hoped), and there 
remains only the ordinary differential equation for the 
factor Gez) itself with z = Cosh TI serving as the independent 
variable (and \I = n~ liZ). Solutions to the differential 
equation for G can be written as directly proportional to 
associated em = 1) Legendre functions of degree I,) = n 4 liZ 
and argument z = Cosh fl. We shall employ in the work to 
follow only the functions of the first kind. P~=n41/1(z) 
or quantities proportional thereto, in order to avoid 
singularities developing at remote locations (as the 
argument z apprbacl"les unity from above). With the index n 
confined to integer values (to insure a single 4valued 
dependence upon the coordinate n, we thus are confined to 
terms of the form 

For A4>: (Cosh fl ~ cos nl/l P~=n_I/'(Z) cos n( 

or 
• For A: ( I) 

that contain as factors Legendre functions of half4integral 
degree (v = 4 liZ, 112, JI2, . .. ) and which we choose to be 
~ about the mid 4plane C' = o. 

Application 

The proposed boundary condition is illustrated by a 
boundary so located that no external sources are present. 
The vector potential function external to that boundary is 
therefore expressible as a summation of terms of the form 
of Eq. 1. If the boundary is conveniently placed 
on a curve (surface) on which the toroidal coordinate T1 
has a constant value T1 = "in, the Legendre functions 
represent a series of harmonic coefficients. If, in practice, 
values of the potential are known at only a finite number of 
points on the "inner boundary" then, of course. only a finite 
number of harmonic coefficients could be evaluated. Such a 
series may, however, be adapted to provide adequate 
estimates of the corresponding values of the potential at 
various points on a nearby surrounding "outer boundary" 
curve. with" = T'Iout. 

In performing a relaxation computation on a mesh 
bounded by such a pair of curves (external to all "sources"), 
any full relaxation pass through the mesh may be foHawed 
by a step wherein the values of potential at points on the 
outer boundary are revised (updated) on the basis of a 
harmonic description of the potential function on the inner 
curve. Such revised values would then be employed, as 
boundary values, in proceeding with the next relaxation pass 
through the mesh. 

• 
In application, we shaLL use the forms for A = pA to 

guide the means of extending this function from an "lnller" 
boundary curve, ,,= "in' to points on a surrounding "outer" 
boundary curve. This "outer", or surrounding. boundary 
curve may conveniently be taken also to be a curve (surface) 
on which the toroidal coordinate" has a constant value (" = 
""ut)· 

It appears computationally desirable, however, to 
regard the function A It as represented not in the form of a 
series that contains as explicit factors the Legendre 

• Only the use of a factor cos nC (in preference to a factor 
sin nC) is indicated here. since we shaU ultimately wish to 
specialize to cases with median 4plane symmetry such that 
the function A4> is even with respect to the variable !. 
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functions P~=n~I/'(Z), but that introduces in their place 

factors ASP1(z) that represent such functions renormalized 
through division by the asymptotic form for Pt, to provide 
the working functions for computational use. 

To specify in toroidal coordinates a suitable inner 
boundary. for POISSON computation of a magnetostatic 
problem with rotational symmetry, we first select a suitable 
region of interest in p, Z space such that one is assured that 
there are no "sources" exterior to this region. 

We may imagine the values of the provisional vector 
potential on the boundary curve Tlin to be develoeed in the 
form of a Fourier series for the working variable A = pA4» 

Sinh" 

;:
===in==:: E C k cos(k • I), 

k:1 
~COSh "in - cos C 

(for situations of even symmetry. with respect to 
C, about z = a). 

Given values of the function A \T1in. C'i) for points! i on the 
boundary Tlin. we wish to make a weighted least 4squares fit 
(with weights Wi) so as to minimize 

lElWi [E c;,cos (k· 1)'1' A ("in"i) l' 
2 i k=l (Sinh llin ) 

fOSh "in - cos (i 

[Regarding suggested forms for the weight factors Wi, see 
the section included on p.5 of Ref. 5 pertaining to weights 
used in connection with circular functions F(v).] 

This minimization objective leads to the set of 
algebraic equations ' that can be written, in matrix notation, 
[ Mk i C1 = Vk • where M is the symmetric matrix with 
'- ' 
k, 2. elements 

M : E W. cos(k • I) .. cos('- • I),. 
k,1 i I I I 

• 
and 

A (". ,0 E w. cos(k • I)G. . In 1 1 (Sinh "in \ 
JCash "in 4 cos Ci ) 

Accordingly. the solution may be written in terms of the 
elements of the inverse matrix. as C1 = [ (M~.1 )1,k Vk' 

k 

With substitution of the expression for Cl. there results 
the working equation (for use in updating values of A· on the 
outer boundary): 

• 
A (" ,!.): 

out J 

where the "working matrix" (a rectangUlar matrix) is 
composed of the elements 

E .. 
),1 

: 
Sinh "out 

Jcosh "aut - cos Cj 

ASP,- ("out) 

ASPI. ("in) 

• 
~COSh Tl in 4 cos Ci 

Sinh Tlin 

)

"1. 

( 
Cosh Tlout . 

Cosh "in 

• cos(1. • I),. [E (M "1. k 
J k=l , 

cos(k • I)GJ 



1

0rort:1 
and where (It :: 

t - '/2 fot t l; 2 

Introducing The Boundaries tnto POISSON'S 
Mesh Generator 

The use of the toroidal coordinate system in solving 
problems with 3xial symmetry requires an eccentric pair of 
circular arcs at the boundary of such a problem (l.e., no 
externaL sources are permitted). The specification for the 
center and radius of ~ of the arcs is a matter of choice; 
these values are then used to compute the center and radius 
of the other arc, using the procedure descr ibed below 
(Fig. 2,). 

• 

Z 
b f -ICOOA 1.0 rOOOA 

i , 

I 
P 

.PI.O 

0.5 

-l000A. 
, 

.'000A , , 
I 
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Fig. 2. (a) The inner and outer boundary used with the 
toroidal coordinate system. (b) Location of the 
4 current loops used in the example. 

We have chosen to assign values for p and R (center 
1,0 1 

and radius) of the Inner boundary and compute the 
corresponding values, P2,O and R2 of the outer boundary. 
(The values of P1 ,o and Rl are arbitrary as long as there are 
no sources outside R

1
.) 

Once Rand P are known, we caLculate the focal 
1 1,0 

length a; a 2 = p~,o - R~. 

The minor Intersection point between a circular 

boundary and the abscissa is a • Tanh(¥>. The distance 6)( 

(Fig. 2a) between two such boundaries on the abscissa Is: 

6)( :: P - R • a • Tanh(T1 out). 
1,0 1 2 

Assuming that 6x is assigned, we calculate T1
out

: 

_. [p -(R ,6x) ] 
flout:: 2 Tanh 1.0 a 1 

= In 1.0 1 

[ 

, , ~ - (R ,6x) ] 

, - P ,(R, 6x) 
1,0 1 

We can now calculate the center and radius of the outer 
boundary: 

= a a R, : 
Tanh T10ut Sinh flout 
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When the mesh generator to the program POISSON is used 
to generate such boundaries, ll.x can be set la the nominal 
grid spacing. This will assure the existence of a finite 
distance between the boundaries and prevent them from 
collapsing inla each other. It Is, however. advisable to 
increase the mesh density at this point, which can be easily 
done by choosing a L\x that Is larger by an integer multiple 
of the nominal grid spacing. 

Example 
To demonstrate the use of the toroidal boundary 

condition, we have used a set of coils in a configuration 
shown in Fig. 2b. We have placed 1000 A In each coil in the 
indicated directions and computed A· = pA vs. p at z = D. 
We further computed Bz along that same path and Br VS. z 
at the mid radius between the two coils. In addition, the 
same functions have been computed analytically for both 
conventional axisymmetric and cartesian geometries. The 
above computations were done at an increasing focal 
dimension (parameter a); however, the relative position of 
the coils, with respect to each other and to the mesh 
boundaries, remained unchanged. (In all problems a 
midplane symmetry is assured by specification of a 
Neumann boundary condition for A· at z = D, and the 
relaxation computations were then performed only in the 
region z ~ D.) 

Case A • Coils Close to the Axis 

The coils were placed at p = J.25 cm ( -1000 A), p = 
4.25 em ( ,1000 A). with each'at z : 0.25 em. The in~er 
boundary was centered midway between the coils at p = ' .. J .75, with a radius of R :: 1.25. We assumed ll.x ": D. I and 
computed TIout = 1.65J8~404 rad., so that P2,O = 3.8D42 and 
R, = 1.4042. 

The close proximity of the coils to the axis of 
symmetry in this example permitted a solution that 
Includes the axis of symmetry and a circular type boundary 
condition. Flux plots for a toroidal b.c. and a circular b.c. 
are shown in Fig. J. Variations In A· are compared 

Fig. J. 

• XBi. 875-2J6J 
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Flux plat around a pair of conductors; (a) axial 
symmetry witt'l toroidal boundary, (b) axial 
symmetry with circular boundary (drawn to a 
reduced scale so as to include the axis of rotational 
symmetry). 
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in Fig. 4. These variations include a comparison between 
two solutions that differ in the number of mesh points that 
have been used. (The cartesian case is a poor approximation 
and is therefore omitted from Fig. 4.) Good agreement 
( < 0.5%) In A· is obtained between theory. circular b.c., 
and toroidal b.c.. The values for Bt are compared in Fig. 5. 

t< 

.l .. 1 . ' 1 .. 
' .. 

Fig. 4. 
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Comparison between the calculated vector 
potential A· (= pAl and theoretical values along 
the midplane of symmetry (z = OJ. The 
axisymmetric case includes the axis of symmetry 
and employs a circular boundary. whereas the 
toroidal case employs a circular boundary around 
the sources. The need for a high mesh density is 
evident. It is noted that numerical difficulties 
will arise when A· approaches zero, causing 
fractional errors to be large. Such difficulties are 
present near Pl 0 for the toroidal case and 
exactly at Pl,o for the cartesian case. In the data 
presented here , no attempt was made to 
overcome such difficulties and large fractional 
errors near Pl 0 accordingly do not reflect a real 
difference between the computated and expected 
values. 

60 ~-.--,--.,...--,­, 
r , 

50 ~ 

" 0 ;... 

l 
; 

'~ 

·-·1 
j S 

JO t-
ca' 

Fig , 5. 

~ 

20 ~ 
I 

i ". 
~ 

0 

0 .2 .. 

Theory 
........ Axisymme try 

I ••.... Toroidol 10'" del'lsity 
-_. Toroidal high del'lsity 

.6 .8 .., 
l (em) 

I 

XBL 875-2373 

The magnetic flux density in the P direction along 
P ~ 3.75 (note that Sr for the Cartesian case is 0). 
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Case B ~ Coils Far From Axis 

The coils are now moved to P ~ 225 cm away from ',0 
the axis of symmetry (Fig. 6). Good agreement between the 
toroidal case and theory is maintained (A· < 0.5 %). 

.., ",--~-~~---.-~--.--...---,--'l 
I 

i 
J 

~~---.~ 
/' __ Thl!o ry J 

/ 
. Toroidol high density . 1 

, .. • •• Cartnia " -I 

.. 
S .. 
",' .. 

., 
0 

0 ., .. .6 .8 .., ... 
Z (em) 
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Fig. 6. Field values for a case where the coils have been 
extended to P = 225 cm. ',0 
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